
Distributed AI: global and geo-
partitioned RAG architecture with
Google Cloud Spanner for geo-
location aware similarity search
Creating and querying a geo-partitioned global database for
embedding-based similarity search

Christoph Bussler
10 min read · Just now

Introduction
With the newly introduced geo-partitioning functionality of Google Cloud

Spanner (https://cloud.google.com/spanner/docs/geo-partitioning) a

distributed RAG system is supported by Cloud Spanner that enables geo-

local as well as global embedding-based similarity search.

This blog outlines a basic global geo-partitioned RAG (Retrieval Augmented

Generation) architecture based on Cloud Spanner. I provide

all gcloud commands to create a global geo-partitioned database, embedding

retrieval and similarity search queries for geo-local and global searches.

Vector databases are all the Rage (https://chbussler.medium.com/vector-

databases-are-all-the-rage-872c888fa348). Cloud Spanner provides the

https://chbussler.medium.com/?source=post_page-----aba9a75fc4c3--------------------------------
https://chbussler.medium.com/?source=post_page-----aba9a75fc4c3--------------------------------
https://cloud.google.com/spanner/docs/geo-partitioning
https://chbussler.medium.com/vector-databases-are-all-the-rage-872c888fa348
https://chbussler.medium.com/vector-databases-are-all-the-rage-872c888fa348

vector data type as well as similarity search

(https://cloud.google.com/spanner/docs/find-k-nearest-neighbors) and

hence also belongs to the category of vector databases.

Use case: international news
The use case for this blog is search of international news based on their

publishing geo-location: Europe, Asia, Americas. The news is made

accessible to similarity search based on embeddings represented as vectors.

The news is stored by geo-location in corresponding geo-partitions in Cloud

Spanner. This enables global search across all geo-locations as well as geo-

location specific search within partitions.

The blog shows queries for both, global and geo-local similarity search.

Note: for cost saving reasons, I use regional Cloud Spanner configurations.

In a production deployment that might be insufficient — multi-region

configurations are possibly a better alternative.

Note: In order to run the commands in your cloud project, I used <project-

id> wherever you have to substitute it with your cloud project.

Overview
In the following the following steps are executed to setup a global geo-

partitioned database for global and geo-local similarity search:

Create a Cloud Spanner instance and database

Create partitions (one each for Europe, Asia, Americas)

https://cloud.google.com/spanner/docs/find-k-nearest-neighbors

Create placements (one each for the three geo-locations)

Create a table newschunk

Create a model (for retrieving embeddings from within the database)

Insert embeddings into the table

Execute geo-local as well as global similarity search queries

Instance and database creation

gcloud spanner instances create news-international-instance
--config=regional-us-central1

--description="Instance for NewsInternational"

--nodes=1

A configuration choice for a global production system could be: nam-eur-

asia3 .

A default partition is required to set up a partitioned database. The initial

database is going to be the default partition.

gcloud spanner databases create news-international-database
--instance=news-international-instance

Since geo-partitioning is in preview, the following configuration has to be

applied to the database.

gcloud spanner databases ddl update news-international-database

--instance=news-international-instance
--ddl="ALTER DATABASE db

 SET OPTIONS (opt_in_dataplacement_preview = true);"

The following command is added just in case you need it for your

deployment to start over. This will delete the partitions and placements as

well in addition to deleting the tables and the data.

gcloud spanner instances delete news-international-instance

At the completion of the deployment and the creation of the partitions

(gcloud commands are yet to come below), the console will show that the

default partition plus the three non-default partitions are running in 4 nodes.

Overview of instance

The following console representation shows additional details (like the

partition identifiers).

Detailed overview of instance

Partition creation
One partition each for Europe, Asia and Americas is created in the following.

gcloud beta spanner instance-partitions create americas-partition

--config=regional-us-east1
--description="americas-partition"

--instance=news-international-instance

--nodes=1

A configuration choice for a global production system could be: nam3 .

gcloud beta spanner instance-partitions create europe-partition

--config=regional-europe-west1
--description="europe-partition"

--instance=news-international-instance

--nodes=1

A configuration choice for a global production system could be: eur3 .

gcloud beta spanner instance-partitions create asia-partition

--config=regional-asia-southeast2
--description="asia-partition"

--instance=news-international-instance
--nodes=1

A configuration choice for a global production system could be: asia1 .

The following command lists the specified partitions. You can use it to check

that they are in place and correct.

gcloud beta spanner instance-partitions list
--instance=news-international-instance

The output is as follows:

NAME: americas-partition
DISPLAY_NAME: americas-partition

CONFIG: regional-us-east1

NODE_COUNT: 1
PROCESSING_UNITS:

STATE: READY

NAME: asia-partition

DISPLAY_NAME: asia-partition
CONFIG: regional-asia-southeast2

NODE_COUNT: 1
PROCESSING_UNITS:

STATE: READY

NAME: default
DISPLAY_NAME: Default Instance Partition

CONFIG: regional-us-central1
NODE_COUNT: 1

PROCESSING_UNITS:

STATE: READY

NAME: europe-partition
DISPLAY_NAME: europe-partition

CONFIG: regional-europe-west1

NODE_COUNT: 1
PROCESSING_UNITS:

STATE: READY

The cloud console shows the following:

List of partitions in cloud console

Placement creation
For each partition one placement is created. A placement specifies a unique

value that is used in tables to specify the partition the data is stored in

(PLACEMENT KEY). The same value can be used in queries for geo-location

specific queries on partitions.

gcloud spanner databases ddl update news-international-database

--instance=news-international-instance
--ddl="CREATE PLACEMENT americas

 OPTIONS (instance_partition='americas-partition')"

gcloud spanner databases ddl update news-international-database

--instance=news-international-instance
--ddl="CREATE PLACEMENT europe

 OPTIONS (instance_partition='europe-partition')"

gcloud spanner databases ddl update news-international-database
--instance=news-international-instance

--ddl="CREATE PLACEMENT asia

 OPTIONS (instance_partition='asia-partition')"

Check that placements are in place and correct with the following

commands:

gcloud spanner databases execute-sql news-international-database

--instance=news-international-instance
--sql='SELECT * FROM information_schema.placements'

The output is

PLACEMENT_NAME: default

IS_DEFAULT: True

PLACEMENT_NAME: americas
IS_DEFAULT: False

PLACEMENT_NAME: asia
IS_DEFAULT: False

PLACEMENT_NAME: europe

IS_DEFAULT: False

And this command for more details on placements:

gcloud spanner databases execute-sql news-international-database
--instance=news-international-instance

--sql='SELECT * FROM information_schema.placement_options'

The output is:

PLACEMENT_NAME: defaults

OPTION_NAME: instance_partition

OPTION_TYPE: STRING(MAX)
OPTION_VALUE: default

PLACEMENT_NAME: americas

OPTION_NAME: instance_partition

OPTION_TYPE: STRING(MAX)
OPTION_VALUE: americas-partition

PLACEMENT_NAME: asia

OPTION_NAME: instance_partition

OPTION_TYPE: STRING(MAX)
OPTION_VALUE: asia-partition

PLACEMENT_NAME: europe

OPTION_NAME: instance_partition
OPTION_TYPE: STRING(MAX)

OPTION_VALUE: europe-partition

In the cloud console placements are shown in the Explorer as follows:

List of placements in the Explorer

Table creation
The following table serves an example of storing news. A news article is

broken up in chunks (using a chunking algorithm). For each chunk a row is

inserted that contains the chunk itself, its corresponding embedding (for

search) and a reference to the entire article.

In addition to an identifier serving as key, the location is stored which refers

to placement values created earlier. This ties the row to the corresponding

partition.

CREATE TABLE newschunk(

 id INT64 NOT NULL,
 news_chunk STRING(MAX) NOT NULL,

 embedding ARRAY<FLOAT64>,

 news_document STRING(MAX) NOT NULL,
 location STRING(MAX) NOT NULL PLACEMENT KEY

) PRIMARY KEY(id)

Create it with this command:

gcloud spanner databases ddl update news-international-database

--instance=news-international-instance

--ddl="CREATE TABLE newschunk(
id INT64 NOT NULL,

news_chunk STRING(MAX) NOT NULL,
embedding ARRAY<FLOAT64>,

news_document STRING(MAX) NOT NULL,

location STRING(MAX) NOT NULL PLACEMENT KEY
) PRIMARY KEY(id);"

Run a query to confirm the table’s existence:

gcloud spanner databases execute-sql news-international-database
--instance=news-international-instance

--sql='SELECT * FROM newschunk'

I provide the following just in case you need it during development:

gcloud spanner databases ddl update news-international-database

--instance=news-international-instance
--ddl="DROP TABLE newschunk"

Embeddings retrieval and insertion
Like in AlloyDB AI (https://medium.com/google-cloud/core-rag-

architecture-with-alloydb-ai-7c7388f33ff1) it is possible to retrieve

embeddings from within database queries like in the following. First a model

has to be created with a specified Vertex AI location (for example, us-central1

— not us-central-1) as it is in the leader region of nam-eur-asia3 (see the

documentation https://cloud.google.com/spanner/docs/ml-tutorial-

embeddings).

You might have to allow access to the Vertex AI models from Cloud Spanner

first:

gcloud beta services identity create
--service=spanner.googleapis.com

--project=<project-id>

And you might have to enable the Vertex AI API:

https://console.developers.google.com/apis/api/aiplatform.googleapis.com/overvie

https://medium.com/google-cloud/core-rag-architecture-with-alloydb-ai-7c7388f33ff1
https://medium.com/google-cloud/core-rag-architecture-with-alloydb-ai-7c7388f33ff1
https://cloud.google.com/spanner/docs/ml-tutorial-embeddings
https://cloud.google.com/spanner/docs/ml-tutorial-embeddings

The model specification looks like this with us-central1 as location and

version 003 of the model textembedding-gecko :

CREATE MODEL textembeddinggecko

INPUT(content STRING(MAX))
OUTPUT(

 embeddings
 STRUCT<

 statistics STRUCT<truncated BOOL, token_count FLOAT64>,

 values ARRAY<FLOAT64>>
)

REMOTE OPTIONS (
endpoint = '//aiplatform.googleapis.com/projects/<project-id>/locations/us-centr

);

Create the model with the following command:

gcloud spanner databases ddl update news-international-database
--instance=news-international-instance

--ddl="CREATE MODEL textembeddinggecko
 INPUT(content STRING(MAX))

 OUTPUT(

 embeddings
 STRUCT<

 statistics STRUCT<truncated BOOL, token_count FLOAT64>,
 values ARRAY<FLOAT64>>

)

 REMOTE OPTIONS (
 endpoint = '//aiplatform.googleapis.com/projects/<project-id>/locations/us-cen

);"

The following command I provide in case you need it during your

development:

gcloud spanner databases ddl update news-international-database

--instance=news-international-instance
--ddl="DROP MODEL textembeddinggecko"

The following command queries the model with an input text string (In

yesterday’s event …), retrieves the embedding for that input text string with

the model and stores it in the table. Note that this row is inserted into

the americas partition:

gcloud spanner databases execute-sql news-international-database

--instance=news-international-instance
--sql='INSERT INTO

 newschunk (id, news_chunk, embedding, news_document, location)
 SELECT 1, "In yesterday’s event …", embeddings.values,

 "http://yes…", "americas"

 FROM ML.PREDICT(
 MODEL textembeddinggecko,

 (SELECT "In yesterday’s event …" AS content)
);'

It might be that the command fails with the following error message. In that

case, repeat it until it succeeds: ERROR: (gcloud.spanner.databases.execute-

sql) ABORTED: Transaction was aborted.

To check for the inserted row execute the following command:

gcloud spanner databases execute-sql news-international-database
--instance=news-international-instance

--sql='SELECT * FROM newschunk'

Two additional texts are inserted, one for each of the remaining partitions

(europe , asia) like this:

gcloud spanner databases execute-sql news-international-database

--instance=news-international-instance
--sql='INSERT INTO

 newschunk (id, news_chunk, embedding, news_document, location)
 SELECT 2, "In tomorrow’s event …", embeddings.values,

 "http://tom…", "europe"

 FROM ML.PREDICT(
 MODEL textembeddinggecko,

 (SELECT "In tomorrow’s event …" AS content)
);'

gcloud spanner databases execute-sql news-international-database

--instance=news-international-instance

--sql='INSERT INTO
 newschunk (id, news_chunk, embedding, news_document, location)

 SELECT 3, "In today’s event …", embeddings.values,
 "http://tod…", "asia"

 FROM ML.PREDICT(

 MODEL textembeddinggecko,
 (SELECT "In today’s event …" AS content)

);'

To check that one row for each partition was created, run:

gcloud spanner databases execute-sql news-international-database

--instance=news-international-instance

--sql='SELECT id, news_chunk, news_document, location
 FROM newschunk;'

The output is

id: 1

news_chunk: In yesterday’s event …
news_document: http://yes…

location: americas

id: 2

news_chunk: In tomorrow’s event …
news_document: http://tom…

location: europe

id: 3

news_chunk: In today’s event …
news_document: http://tod…

location: asia

Geo-location and global similarity query
Executing a similarity search requires an input embedding that is used by the

similarity search to compare it with the stored embeddings. The Cloud

Spanner documentation shows examples

here: https://cloud.google.com/spanner/docs/find-k-nearest-neighbors. As

you can see, an embedding is provided as an ARRAY (vector) constant in these

examples.

In an application, however, the application would have to compute the input

embedding based on for example user input. If the user wants to search for

documents that contain similar content to what the user enters, the

similarity search would take the user’s input and from that creates the input

embedding by retrieving the embedding using a text embedding model.

For the purposes of this blog, I compute an embedding based on a fixed

string within the retrieval query. This is to show the principle and to be able

to execute a query without having to build an application in this blog.

https://cloud.google.com/spanner/docs/find-k-nearest-neighbors

User input: "In some day’s event …"

Corresponding input embedding: ML.PREDICT(

 MODEL textembeddinggecko,

 (SELECT "In some day’s event …" AS content)
)

Global similarity search

The following query searches in all partitions of the database. It is a global

query searching news from all geo-locations by similarity:

gcloud spanner databases execute-sql news-international-database

--instance=news-international-instance
--sql='SELECT n.id, n.news_document, n.news_chunk, n.location

 FROM newschunk n, ML.PREDICT(
 MODEL textembeddinggecko,

 (SELECT "In some day’s event …" AS content)

) p
 ORDER BY EUCLIDEAN_DISTANCE(n.embedding,

 p.embeddings.values)
 LIMIT 5;'

The result is

id: 3

news_document: http://tod…
news_chunk: In today’s event …

location: asia

id: 1

news_document: http://yes…
news_chunk: In yesterday’s event …

location: americas

id: 2

news_document: http://tom…
news_chunk: In tomorrow’s event …

location: europe

The same query run in the Explorer is as follows:

Similarity query in Explorer

Geo-local similarity search

A corresponding similarity query that only searches in news in

the americas partition (geo-local search) limits the scope of the query by the

predicate WHERE location = "americas" (using the placement key):

gcloud spanner databases execute-sql news-international-database

--instance=news-international-instance
--sql='SELECT n.id, n.news_document, n.news_chunk, n.location

 FROM newschunk n, ML.PREDICT(

 MODEL textembeddinggecko,
 (SELECT "In some day’s event …" AS content)

) p
 WHERE location = "americas"

 ORDER BY EUCLIDEAN_DISTANCE(n.embedding,

 p.embeddings.values)
 LIMIT 5;'

The output is

id: 1
news_document: http://yes…

news_chunk: In yesterday’s event …

location: americas

This concludes the creation of the Cloud Spanner instance, database,

partitions, placements, model, table and test data queried by geo-local and

global similarity search.

Architecture improvement possibilities

Country-specific news

The partitions are by a larger geographic area encompassing many countries

each. It is possible to have placements not only for geolocations like Europe

or Asia, but in addition for individual countries if the new source is to be

associated with a specific country. This then supports country specific

similarity searches as well.

Of course, in this case the similarity queries become more complex,

especially if news of several countries are searched.

AI embedding model endpoint for each partition

Specifying a model (CREATE MODEL) requires specifying a model access

endpoint location (above it is using the endpoint in us-central1). There are

many regions that have model access

endpoints: https://cloud.google.com/vertex-ai/docs/general/locations.

Therefore it is possible to create different models, one close or in the same

regions as the partitions. If the queries were to run close or in the region of

the partition the call to the model would be as close as it can be.

Conclusion
The newly implemented partition feature of Cloud Spanner supports geo-

location similarity queries as the base of a global RAG architecture.

A partitioned database supports geo-local similarity queries scoped to a

partition, and in the same partitioned database global queries across all

partitions.

This is a very expressive approach for distributed AI systems based on the

RAG architecture approach of storing and querying embeddings represented

as vectors on a global basis.

Cloud Spanner Distributed Ai Vector Database Vector Search

Embedding Model

https://cloud.google.com/vertex-ai/docs/general/locations
https://medium.com/tag/cloud-spanner?source=post_page-----aba9a75fc4c3---------------cloud_spanner-----------------
https://medium.com/tag/distributed-ai?source=post_page-----aba9a75fc4c3---------------distributed_ai-----------------
https://medium.com/tag/vector-database?source=post_page-----aba9a75fc4c3---------------vector_database-----------------
https://medium.com/tag/vector-search?source=post_page-----aba9a75fc4c3---------------vector_search-----------------
https://medium.com/tag/embedding-model?source=post_page-----aba9a75fc4c3---------------embedding_model-----------------

https://chbussler.medium.com/?source=post_page-----aba9a75fc4c3--------------------------------

